

REopt Model Background & Overview for ISWG

Emma Elgqvist, NREL Rachel Shepherd, FEMP

December 7, 2017

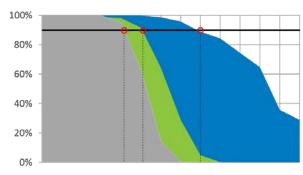
REopt™: Decision Support throughout the Energy Planning Process

Optimization • Integration • Automation

Master Planning

Economic Dispatch

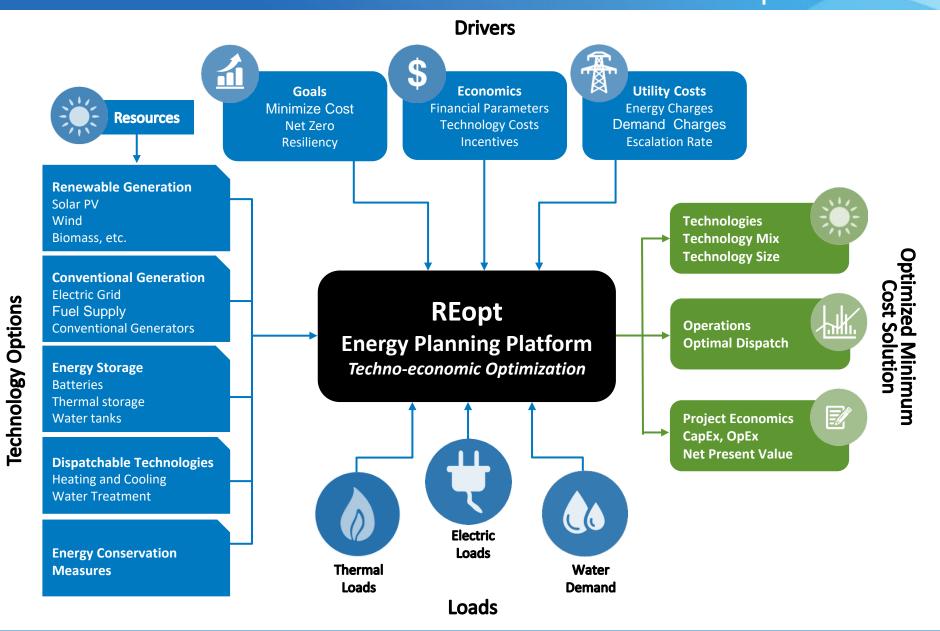
Resiliency Analysis

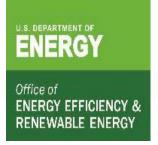

- Portfolio prioritization
- Cost to meet goals

- Technology types & sizes
- Optimal operating strategies
- Microgrid dispatch
- Energy security evaluation

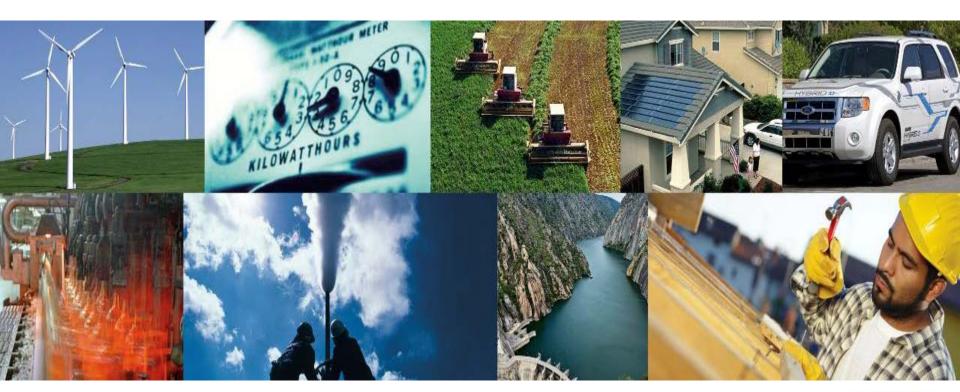
200 Nichesten

Nichest

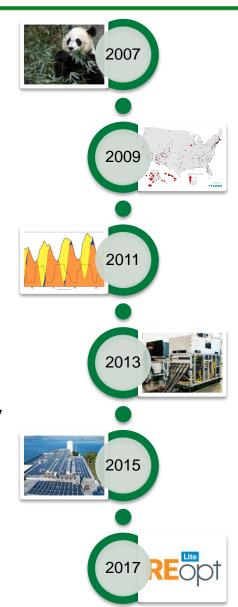

Cost-effective RE at Army bases


Cost-optimal Operating Strategy

Extending Resiliency with RE


REopt Inputs and Output

Using REopt for Federal Agencies


FEMP's Support of REopt

FEMP uses REopt to help agencies screen and evaluate renewable energy opportunities and focus resources on projects that have economic and technical viability.

REopt has been used to assess opportunities at over 10,000 sites, REopt analyses have supported decisions that led to more than 260 MW of renewable energy development.

- US Forest Service
- National Park Service
- Fish and Wildlife Service
- Department of Defense
- Department of Energy
- Department of Commerce
- Department of State
- General Services Administration

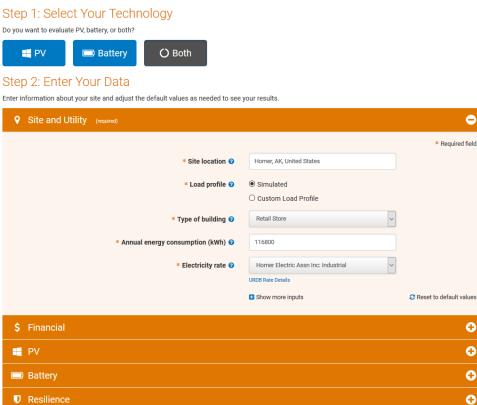
- US Department of Veteran's Affairs
- Department of Homeland Security
- US Department of Agriculture
- US Bureau of Reclamation
- Bureau of Land Management
- Indian Health Service
- Western Area Power Administration
- Navajo Generating Station

Developing the REopt Lite Web Tool

Mission Provide access to a decision support tool for sitespecific, optimized, and integrated analysis

Vision

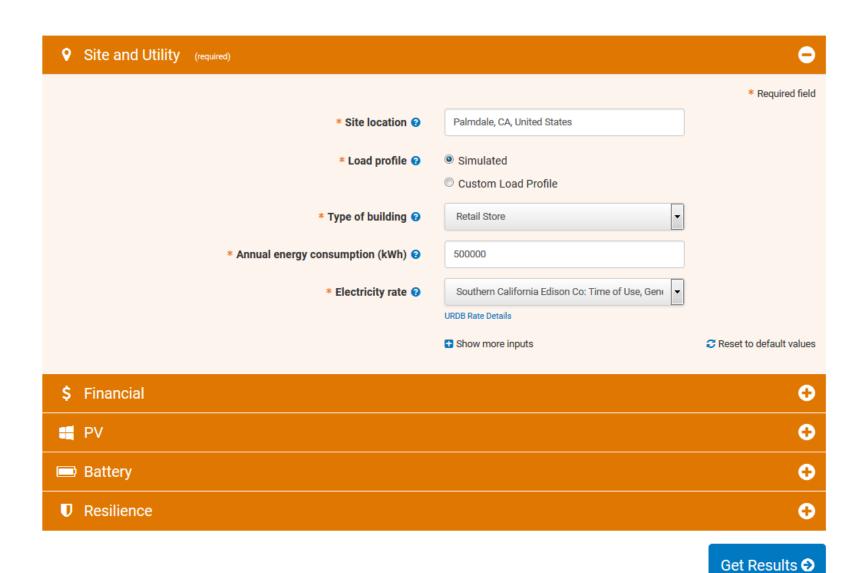
Advance data-driven decision-making and deployment of renewable energy and energy storage technologies


REopt Lite Web Tool Overview

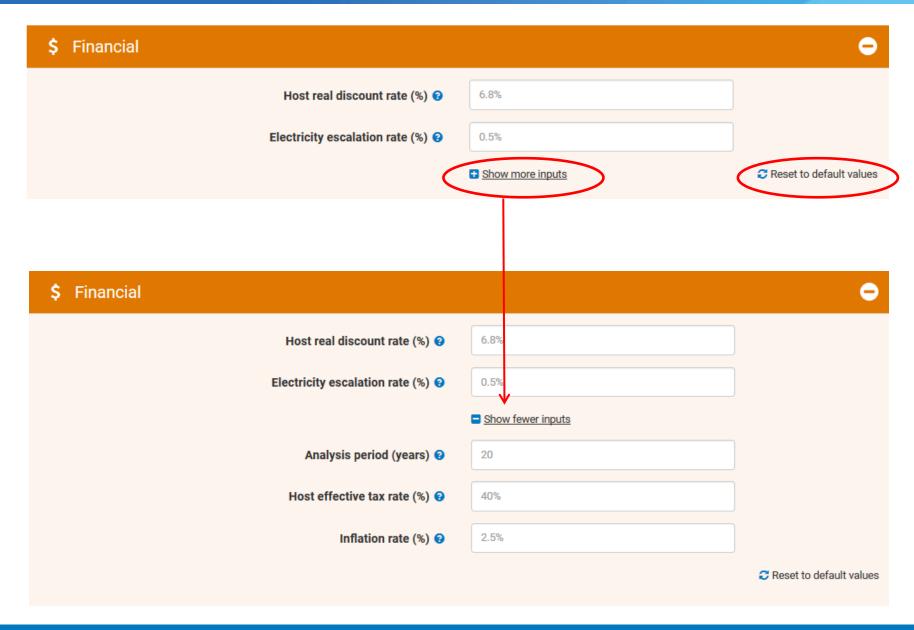
Emma Elgqvist

REopt Lite Web Tool

- The REopt Lite Web Tool offers a no-cost subset of NREL's more comprehensive REopt model
- Beta version of web tool launched September 2017
- Evaluates the economics of gridconnected PV and battery storage at a site
- Allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy


https://reopt.nrel.gov/tool

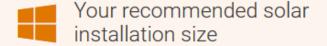
Get Results •


REopt Platform vs. Web Tool Phase 1 Capabilities

	Current Platform Capabilities	Phase 1 Web Tool Capabilities
Technologies Evaluated	PV, SHW, SVP, Wind, Biomass, LFG, WTE, GSHP, Storage, Conventional reciprocating and combustion turbine generators	PV + Storage
Sites Evaluated	Multi-site	Single site
Load Types	Electric, thermal, interval data from actual load profiles or simulated from DOE commercial reference buildings, others for customized analysis	Electric only interval data or simulated from DOE commercial reference buildings
Rate Tariffs	Blended rates, simple rate tariffs, and custom rates entered by user	Rate tariffs selected from URDB
Resiliency Analysis	Simple outage analysis or complex stochastic outage modeling	Simple outage analysis

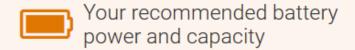
Required Site Specific Inputs

Additional Inputs Can Be Edited, Or Left As Defaults


Summary Results Include System Sizes and Savings

Results for Your Site

These results from REopt Lite summarize the economic viability of PV and battery storage at your site. You can edit your inputs to see how changes to your energy strategies affect the results.



392 kW PV size

Measured in kilowatts (kW) of direct current, this recommended size minimizes the life cycle cost of energy at your site.

93 kW battery power

342 kWh battery capacity

This system size minimizes the life cycle cost of energy at your site. The battery power and capacity are optimized for economic performance.

Your potential life cycle savings (20 years)

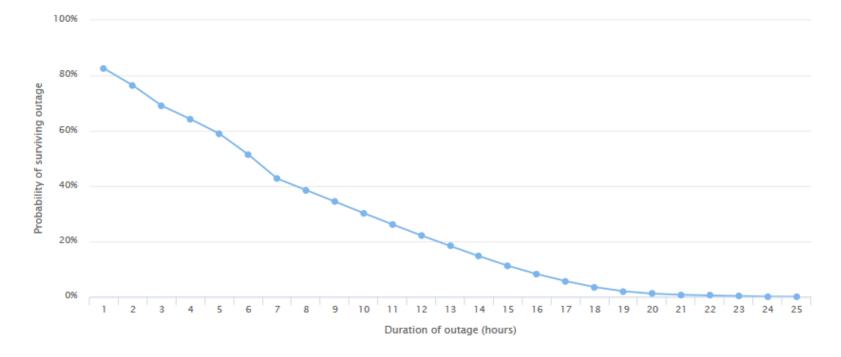
This is the net present value of the savings (or costs if negative) realized by the project based on the difference between the life cycle energy cost of doing business as usual compared to the optimal case.

Additional Results Output: Economics Summary

	Business As Usual 🛭	Optimal Case ②	Difference 0	
System Size, Energy Production, and System Cost				
PV Size 🥹	0 kW	392 kW	392 kW	
Annualized PV Energy Production 🤢	0 kWh	680,826 kWh	680,826 kWh	
Battery Power 🤢	0 kW	93 kW	93 kW	
Battery Capacity 9	0 kWh	342 kWh	342 kWh	
DG System Cost (Net CAPEX + O&M) 9	\$0	\$526,342	\$526,342	
Energy Supplied From Grid in Year 1 🧿	1,000,000 kWh	358,623 kWh	641,377 kWh	
Year 1 Utility Cost — Before Tax				
Utility Energy Cost 9	\$118,263	\$34,216	\$84,047	
Utility Demand Cost 🧿	\$40,008	\$18,623	\$21,385	
Utility Fixed Cost ②	\$3,110	\$3,110	\$0	
Utility Minimum Cost Adder 🔞	\$0	\$0	\$0	
Life Cycle Utility Cost — After Tax				
Utility Energy Cost 🧿	\$857,868	\$248,200	\$609,668	
Utility Demand Cost ②	\$290,213	\$135,089	\$155,124	
Utility Fixed Cost 🧿	\$22,562	\$22,562	\$0	
Utility Minimum Cost Adder 🔞	\$0	\$0	\$0	
Total System and Life Cycle Utility Cost — After Tax				
Life Cycle Energy Cost 🧿	\$1,170,644	\$932,194	\$238,450	
Net Present Value ②	\$0	\$238,450	\$238,450	

Download ProForma Spreadsheet

Additional Results Output: Hourly Dispatch Graph



Simple Resiliency Evaluation

Outage Simulation

Evaluate the amount of time that your system can survive grid outages.

Average Resiliency ②	7 hours
Minimum Resiliency 0	0 hours
Maximum Resiliency 🥹	25 hours

FY18 REopt Lite Development Plan

Task	Description	
API	Expose API and provide wiki to call model via API	
Resiliency	 Expand resiliency analysis Build up a critical load profile based on equipment Model existing diesel and PV systems Design system based on probability of sustaining critical load Incorporate the value of lost load 	
User data storage	Allow user to retrieve and edit stored inputs for future analysis	
Wind	Add wind technology	
Custom utility rate	Allow user to enter custom utility rate tariff	
Report	Downloadable sensitivity analysis report and dispatch strategy	
User resources	Training materials and case studies	

FY18 development funded by FEMP, and the Kresge Foundation through the Clean Energy Group

Resources

- REopt website: https://reopt.nrel.gov/
- REopt Lite web tool: https://reopt.nrel.gov/tool
- REopt technical report: https://www.nrel.gov/docs/fy17osti/70022.pdf
- REopt fact sheet: http://www.nrel.gov/docs/fy14osti/62320.pdf

REopt Website https://reopt.nrel.gov/

Emma Elgqvist emma.elgqvist@nrel.gov

Rachel Shepherd rachel.shepherd@ee.doe.gov

www.nrel.gov

